Application of approximate matrix factorization to high order linearly implicit Runge-Kutta methods
نویسندگان
چکیده
Linearly implicit Runge-Kutta methods with approximate matrix factorization can solve efficiently large systems of differential equations that have a stiff linear part, e.g. reaction-diffusion systems. However, the use of approximate factorization usually leads to loss of accuracy, which makes it attractive only for low order time integration schemes. This paper discusses the application of approximate matrix factorization with high order methods; an inexpensive correction procedure applied to each stage allows to retain the high order of the underlying linearly implicit Runge-Kutta scheme. The accuracy and stability of the methods are studied. Numerical experiments on reaction-diffusion type problems of different sizes and with different degrees of stiffness illustrate the efficiency of the proposed approach.
منابع مشابه
Operator splitting and approximate factorization for taxis-diffusion-reaction models
In this paper we consider the numerical solution of 2D systems of certain types of taxis-diiusion-reaction equations from mathematical biology. By spatial discretization these PDE systems are approximated by systems of positive, nonlinear ODEs (Method of Lines). The aim of this paper is to examine the numerical integration of these ODE systems for low to moderate accuracy by means of splitting ...
متن کاملA Class of Linearly-implicit Runge-kutta Methods for Multibody Systems
We consider a special class of partitioned linearly-implicit Runge-Kutta methods for the solution of multibody systems in index 3 formulation. In contrast to implicit methods these methods require only the solution of linear systems for the algebraic variables. We study convergence and consistency of the methods and give numerical results for a special method of order 4 and comparisons.
متن کاملAn efficient implicit Runge-Kutta method for second order systems
We will consider the efficient implementation of a fourth order two stage implicit Runge-Kutta method to solve periodic second order initial value problems. To solve the resulting systems, we will use the factorization of the discretized operator. Such proposed factorization involves both complex and real arithmetic. The latter case is considered here. The resulting system will be efficient and...
متن کاملPreconditioning of implicit Runge-Kutta methods
A major problem in obtaining an efficient implementation of fully implicit RungeKutta (IRK) methods applied to systems of differential equations is to solve the underlying systems of nonlinear equations. Their solution is usually obtained by application of modified Newton iterations with an approximate Jacobian matrix. The systems of linear equations of the modified Newton method can actually b...
متن کاملPreconditioning and Parallel Implementation of Implicit Runge-kutta Methods
A major problem in obtaining an efficient implementation of fully implicit RungeKutta (IRK) methods applied to systems of differential equations is to solve the underlying systems of nonlinear equations. Their solution is usually obtained by application of modified Newton iterations with an approximate Jacobian matrix. The systems of linear equations of the modified Newton method can actually b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 286 شماره
صفحات -
تاریخ انتشار 2015